So here are a few general video’s along with a few interesting papers regarding storing HLW as/in glass-ceramics. The academic research and discussion of this immobilization methods is very robust so lots of stuff you can read on that subject.
BUT we dont have to store Fission HLW if we reprocess it and run it in conjunction with other reactor types like LIFTR. Much of the remaining waste produced in currently operating reactors is still mostly unused and at most 5-10% of the total material is used up. We can pass that through a breeder reactor and convert U238 to P239 which turns “useless” naturally occurring non fissile uranium into fissile plutonium.
So, my point is that assuming we keep using low enrichment uranium to power current BWR/PWR reactors we have an existing solution for the waste (which if ALL of the worlds HLW was combined would not even fill a professional stadium) that easily takes care of all the waste created since we started production.
BUT all that waste is actually fuel if we recycle/reprocess it and we can burn up another large percentage of that waste and its remaining elements are generally shorter lived forms of waste.
Thanks for all the informative sources. First of all, I think you are probably right that it is a political or rather economic problem, not necessarily a scientific one. Capitalism doesn’t give any incentive to care for the environment or to recycle anything if it isn’t profitable. And politics are heavily influenced if not driven by capitalism.
But then, seeing the various articles you provided about nuclear waste storage, I didn’t really get the impression that it is a solved problem. Sabine Hossenfelder spends a very long time talking about what nuclear waste is but only mentions problems with storage for hundreds of thousands of years for a very short time. And also Elina Charatidsou doesn’t even mention potential problems of geological changes etc. And the facility she is presenting is still in the research stage. So where are the solutions for a long-term storage that guarantees safety? Nuclear waste may not be as problematic as it is made out, but real solutions look different to me.
Very interesting also the point about recycling nuclear waste. I haven’t even heard of it and it sounds like a really good thing to do. We’d still have very high costs handling and storing it, but only for a few hundreds of years at least. Although it seems like actually applying this is still not really planned by most countries and even then the problem of nuclear waste doesn’t go away fully.
Honestly yes! I made a strong bold statement its only fair to ask for references.
https://www.youtube.com/watch?v=aDUvCLAp0uU
https://www.youtube.com/watch?v=F8x_E1pMSHE
https://www.cambridge.org/core/journals/mrs-bulletin/article/abs/glassceramics-for-nuclearwaste-immobilization/6C69A3D12C516F1B98DE91A9675F9411
https://www.cambridge.org/core/journals/mrs-bulletin/article/abs/studies-of-ancient-glass-and-their-application-to-nuclearwaste-management/B11A67361CE124E7A8A84415545A112A
https://www.lyellcollection.org/doi/abs/10.1144/GSL.SP.2004.236.01.04
https://www.ingentaconnect.com/content/sgt/gt/2000/00000041/00000006/4106186
So here are a few general video’s along with a few interesting papers regarding storing HLW as/in glass-ceramics. The academic research and discussion of this immobilization methods is very robust so lots of stuff you can read on that subject.
BUT we dont have to store Fission HLW if we reprocess it and run it in conjunction with other reactor types like LIFTR. Much of the remaining waste produced in currently operating reactors is still mostly unused and at most 5-10% of the total material is used up. We can pass that through a breeder reactor and convert U238 to P239 which turns “useless” naturally occurring non fissile uranium into fissile plutonium.
https://en.wikipedia.org/wiki/Plutonium-239
https://www.youtube.com/watch?v=IzQ3gFRj0Bc
https://www.youtube.com/watch?v=TaC2pvDMPc0&t=603s
So, my point is that assuming we keep using low enrichment uranium to power current BWR/PWR reactors we have an existing solution for the waste (which if ALL of the worlds HLW was combined would not even fill a professional stadium) that easily takes care of all the waste created since we started production.
BUT all that waste is actually fuel if we recycle/reprocess it and we can burn up another large percentage of that waste and its remaining elements are generally shorter lived forms of waste.
https://www.sciencedirect.com/science/article/abs/pii/S0301421510007263
Thanks for all the informative sources. First of all, I think you are probably right that it is a political or rather economic problem, not necessarily a scientific one. Capitalism doesn’t give any incentive to care for the environment or to recycle anything if it isn’t profitable. And politics are heavily influenced if not driven by capitalism.
But then, seeing the various articles you provided about nuclear waste storage, I didn’t really get the impression that it is a solved problem. Sabine Hossenfelder spends a very long time talking about what nuclear waste is but only mentions problems with storage for hundreds of thousands of years for a very short time. And also Elina Charatidsou doesn’t even mention potential problems of geological changes etc. And the facility she is presenting is still in the research stage. So where are the solutions for a long-term storage that guarantees safety? Nuclear waste may not be as problematic as it is made out, but real solutions look different to me.
Very interesting also the point about recycling nuclear waste. I haven’t even heard of it and it sounds like a really good thing to do. We’d still have very high costs handling and storing it, but only for a few hundreds of years at least. Although it seems like actually applying this is still not really planned by most countries and even then the problem of nuclear waste doesn’t go away fully.